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Abstract. Formal representations of business processes are used for anal-
ysis of the process behavior. Workflow nets are a widely used formalism
for describing the behavior of business processes. Structure theory of pro-
cesses investigates the relation between the structure of a model and its
behavior. In this paper, we propose to employ the connectivity property
of workflow nets as an angle to their structural analysis. In particular,
we show how soundness verification can be organized using biconnected
components of a workflow net. This allows for efficient identification and
localization of flaws in the behavior of workflow nets and for supporting
process analysts with diagnostic information.

1 Introduction

Business process modeling is the basis for understanding, improving, and imple-
menting working procedures in organizations. Execution semantics of common
business process definition languages, such as BPEL or UML activity diagrams,
are described rather informally. However, formal investigations rely on a mapping
of these languages into a formalism. To this end, various mappings from process
definition languages to Petri nets have been proposed, e.g., [1,2].

Workflow nets are a structural subclass of Petri nets with a dedicated source
(start) place and a dedicated sink (end) place. Soundness is a desirable correctness
property of workflow nets [3], since a sound workflow net always terminates
properly and each task can contribute to the completion of a process. Consequently,
a business process is considered to be correct if the corresponding workflow net
is sound.

Soundness verification is a well-studied problem. Most approaches use state
space analysis to solve it, so that the resulting state space explosion problem has
to be faced. In this paper, we advocate to use structural analysis of workflow nets
to investigate soundness, providing insight into an alternative – and in many cases,
preferable – way to check soundness. In particular, we employ the biconnected
decomposition of workflow nets. That is, we identify components based on cut-
vertices, i.e., nodes of the net that when removed yield the net disconnected.
Based thereon, we point out how the soundness verification can be organized from
the derived components of a workflow net. Where applicable, we draw conclusions
on soundness for the general class of workflow nets; otherwise, the results are
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restricted to safe nets. Besides formal results on the biconnected decomposition of
workflow nets, we provide an outlook on how the triconnected decomposition of
biconnected components of workflow nets might also be used to verify soundness.
Despite the variety of existing soundness verification techniques, the efficiency
and the structural diagnostic information for the general class of workflow nets
are unique characteristics of our approach, coming at the expense of verification
completeness. Withal, we see a great potential in combining our approach with
existing techniques to achieve more mature process model verification.

The paper is structured as follows. The next section provides formal pre-
liminaries for our work. In Sect. 3, we show how soundness verification can be
organized following on the biconnected decomposition of workflow nets. A discus-
sion on how this approach can be extended using triconnected decomposition
techniques is presented in Sect. 4. Finally, the paper closes with a discussion of
related work and conclusions.

2 Preliminaries

We use Petri nets as our formal grounding. A Petri net has a structure given by
a net, a marking that represents a state of the net, and the execution semantics
that describes the principles of state transitions.

Definition 1 (Petri net). A Petri net, or a net, is a tuple N = (P, T, F ),
with P and T as finite disjoint sets of places and transitions, P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) as the flow relation.

We write X = (P ∪ T ) for all nodes of a net. The transitive closure of F is
denoted by F+. For a node x ∈ X, •x = {y ∈ X | (y, x) ∈ F}, x• = {y ∈
X | (x, y) ∈ F}. A node x ∈ X is an input (output) node of a node y ∈ X, iff
x ∈ •y (x ∈ y•). inN (x) = {(n, x) | n ∈ •x} are the incoming flows of x and
outN (x) = {(x, n) | n ∈ x•} are the outgoing flows of x.

Definition 2 (Net semantics). Let N = (P, T, F ) be a net.
◦ M : P → N0 is a marking of N , M denotes all markings of N . M(p) returns

the number of tokens in place p. [p] denotes the marking when place p contains
just one token and all other places contain no tokens.

◦ For any transition t ∈ T and any marking M ∈M, t is enabled in M , denoted
by (N,M)[t〉, iff ∀p ∈ •t : M(p) ≥ 1.
◦ Marking M ′ is reached from M by firing of t, denoted by (N,M)[t〉(N,M ′),

such that M ′ = M − •t+ t•, i.e., one token is taken from each input place of
t and one token is added to each output place of t.
◦ A firing sequence of length n ∈ N is a function σ : {0, . . . , n− 1} → T . For
σ = {(0, tx), . . . , (n− 1, ty)}, we also write σ = t0, . . . , tn−1.
◦ For any two markings M,M ′ ∈ M, M ′ is reachable from M in N , denoted

by M ′ ∈ [N,M〉, iff there exists a firing sequence σ leading from M to M ′.
◦ A system is a pair (N,M0), where N is a net and M0 its initial marking.

Workflow (WF-)nets form a subclass of Petri nets. WF-nets were proposed in [4]
for modeling workflow definitions. A WF-net is a net with two special places: one
to mark the initialization and the other to mark the completion of a workflow.
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Definition 3 (WF-net, Short-circuit net, WF-system).
A Petri net N = (P, T, F ) is a workflow net (or a WF-net), iff N has a dedicated
source place i ∈ P , with •i = ∅, N has a dedicated sink place o ∈ P , with o• = ∅,
and the short-ciruit net N ′ = (P, T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}), t∗ /∈ T , of N is
strongly connected. A WF-system is a pair (N,Mi), where Mi = [i].

Soundness is the basic correctness property of workow nets [3]. A sound workow
net always terminates and each transition can contribute to the completion of
the workflow by following certain route through the net.

Definition 4 (Liveness, Boundedness, Safeness, Soundness).
◦ A system (N,M0) is live, iff for every reachable marking M ∈ [N,M0〉 and
t ∈ T , there exists a marking M ′ ∈ [N,M〉 such that (N,M ′)[t〉.

◦ A system (N,M0) is bounded, iff the set [N,M0〉 is finite.
◦ A system (N,M0) is safe, iff ∀ M ∈ [N,M0〉 ∀ p ∈ P : M(p) ≤ 1.
◦ A WF-system (N,Mi) with N = (P, T, F ) is sound, iff the short-circuit

system (N ′,Mi) is live and bounded.

For the purpose of structural analysis of nets, we give the following definitions.

Definition 5 (Subnet, Path).
Let N ′ = (P ′, T ′, F ′) and N = (P, T, F ) be two nets, and let P ′ ⊆ P , T ′ ⊆ T .
N ′ is a subnet of N , denoted N ′ ⊆ N , iff F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). A
path is a non-empty sequence 〈x1, . . . , xk〉 of nodes, k > 1, denoted by π(x1, xk),
which satisfies (x1, x2), . . . , (xk−1, xk) ∈ F . We write xi ∈ π, if xi is on the path.

The structure of a Petri net (P, T, F ) is defined by the graph (X,F ). Connectivity
is a basic property of a graph. A graph is connected if every pair of distinct
vertices in the graph is connected; otherwise the graph is disconnected. A graph is
biconnected if there exists no vertex whose removal renders the graph disconnected.
If such a vertex exists, it is called a cutvertex. Note that removal of a vertex
implies removal of all incident edges. After removing a cutvertex from a graph,
the graph gets decomposed into disconnected subgraphs (or components).

3 Biconnected Verification of WF-nets

The soundness of a WF-net can be verified by checking liveness and boundedness
of the corresponding short-circuit net. Short-circuit nets are connected, but not
necessarily biconnected. This section explains how soundness verification of a
WF-net can be broken down into checks of its biconnected components.

The classic sequential algorithm for computing biconnected components in a
connected graph, proposed in [5], runs in linear time. Let (X,F ) be a connected
graph, then the algorithm requires time and space proportional to max(|X|, |F |).
Biconnected components can be arranged in a tree structure—the tree of the
biconnected components. The tree has two types of nodes that refer either to
cutvertices or to biconnected components. Edges of the tree connect cutvertices
with associated biconnected components, i.e., there is an edge between a cutvertex
and a biconnected component if the biconnected component contains the cutvertex.
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Fig. 1. (a) A short-circuit net, (b) biconnected subnets, and (c) the 2-WF-tree

The number of nodes in the tree is O(|X|) and, hence, the space required to store
the tree and all the biconnected components is O(max(|X|, |F |)).

A biconnected subnet is a biconnected component of a short-circuit net. The
tree of the biconnected subnets, or the 2-WF-tree, is the tree of the biconnected
components of a short-circuit net.

Definition 6 (The tree of the biconnected subnets).
Let N = (P, T, F ) be a WF-net and let N ′ be its short-circuit net with the extra
transition t∗. The tree of the biconnected subnets, or the 2-WF-tree, of N is a
tuple T 2

N = (B, C, ρ, η,M), where:
◦ B is a set of all biconnected subnets and C is a set of all cutvertices of N ′,
◦ ρ = (Pρ, Tρ, Fρ) ∈ B is the root of T 2

N , iff t∗ ∈ Tρ,
◦ η : B → P(B) assigns to biconnected subnet its child biconnected subnets,
◦ M ⊆ B × C × B, (b1, c, b2) ∈ M, iff c is shared by b1 and b2, and b2 ∈ η(b1).

Fig. 1 exemplifies the biconnected decomposition of a WF-net: Fig. 1(a) shows
a short-circuit net. The net has two place cutvertices p1 and p4, which are
highlighted with grey background. The cutvertices induce four biconnected
subnets A1–A4, cf., Fig. 1(b). Finally, Fig. 1(c) organizes the subnets in the
2-WF-tree with the root node that corresponds to the biconnected subnet A1.

One observation is that a WF-net can be sound only if all the cutvertices of
the corresponding short-circuit net are places.

Lemma 1. Let (N,Mi), N = (P, T, F ), be a WF-system and N ′ be the short-
circuit net of N . If t ∈ T is a cutvertex of N ′, then (N,Mi) is not sound.

Proof. Because t is a cutvertex of N ′, there exists p′ ∈ •t, p′ 6= i, such that t is
on every path π(i, p′). We show now by induction that t is never enabled, i.e.,
for every marking M ∈ [N,Mi〉 holds ¬(N,M)[t〉.
base: ¬(N,Mi)[t〉 as Mi(p

′) = 0, i.e., t is not enabled by the initial marking.
step: Let M ′ be a marking reachable from Mi by a firing sequence σ that does

not contain t, i.e., t was never enabled. Let t′ ∈ T be such that (N,M ′)[t′〉.
Assume that t′ = t, then M ′(p′) ≥ 1. If M ′(p′) ≥ 1, then σ contains all the
transitions of some path π(i, p′) and, hence, contains t. We have reached the
contradiction and, therefore, t′ 6= t.

As t is never enabled, (N ′,Mi) is not live. Thus, (N,Mi) is not sound. ut
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A transition cutvertex hints at unsoundness of the net and, therefore, constitutes
valuable diagnostic information. In case all cutvertices of a short-circuit net
are places, verification procedure should proceed. We show how the verification
procedure can be broken down into checks of biconnected subnets of the short-
circuit net. First, we explain how to derive WF-nets from biconnected subnets.

Definition 7 (Biconnected sub-WF-net). Let N = (P, T, F ) be a WF-net,
T 2
N = (B, C, ρ, η,M) its 2-WF-tree, and b = (Pb, Tb, Fb) ∈ B. A biconnected

sub-WF-net of N , denoted b?, b? = (Pb? , Tb? , Fb?), is obtained from b as follows:
◦ If b = ρ, then Pb? = Pb, Tb? = Tb ∩ T , and Fb? = Fb ∩ F .
◦ If b 6= ρ and a ∈ B, c ∈ C are such that there exists (a, c, b) ∈ M, then
Pb? = (Pb \ {c}) ∪ {i, o}, Tb? = Tb, and Fb? = {(x1, x2) ∈ Fb | x1 6= c ∧
x2 6= c} ∪ {(i, x) ∈ {i} × Tb | (c, x) ∈ Fb} ∪ {(x, o) ∈ Tb × {o} | (x, c) ∈ Fb}.

A WF-net that corresponds to a subtree of b, denoted bM, is obtained by merging
sub-WF-net b? and all subnets that are descendants of b at shared cutvertices.
Biconnected sub-WF-nets are also referred to as biconnected WF-nets.
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Fig. 2. Biconnected sub-WF-nets

Fig. 2 presents sub-WF-nets of the short-
circuit net provided in Fig. 1(a). The sub-WF-
nets correspond to the biconnected subnets in
Fig. 1(b). Sub-WF-net A1 is obtained from the
corresponding biconnected subnet by ignoring
transition t∗ and adjacent flow relations. In
the case when a biconnected subnet is not the
root of the 2-WF-tree, cf., Fig. 1(c), the cor-
responding sub-WF-net is obtained as follows:
The cutvertex that corresponds to the parent node in the 2-WF-tree is removed
from the subnet and two fresh places are added, a source place i and a sink
place o. The flow relations of the cutvertex are rerouted to originate from i or to
terminate at o, respectively.

Construction of a WF-net that corresponds to a subtree in the 2-WF-tree is
supported by two types of transformations, viz., refinements, of nets.

Definition 8 (Self-loop place refinement, Transition refinement).
◦ Let N1 = (P1, T1, F1) be a net, p ∈ P1 a place. A self-loop place refinement

of p yields a net N2 = (P1, T1 ∪ {tp}, F1 ∪ {(p, tp), (tp, p)}), denoted N1[p].
◦ Let N1 = (P1, T1, F1) be a net, N2 = (P2, T2, F2) a WF-net with source i

and sink o, T1 ∩ T2 = ∅, P1 ∩ P2 = ∅, and t ∈ T1. A transition refinement of
t by N2 yields a net N3 = (P3, T3, F3), denoted N1[t/N2], such that:
− P3 = P1 ∪ (P2 \ {i, o}), T3 = (T1 \ {t}) ∪ T2, and
− F3 = {(x1, x2) ∈ F1|x1 6= t ∧ x2 6= t} ∪ {(x1, x2) ∈ F2|{x1, x2} ∩ {i, o}}
∪ {(x1, x2) ∈ P1 × T2 | (x1, t) ∈ F1 ∧ (i, x2) ∈ F2}
∪ {(x1, x2) ∈ T2 × P1 | (t, x2) ∈ F1 ∧ (x1, o) ∈ F2}.

A self-loop place refinement preserves liveness and safeness, cf., [6]. The concept
of transition refinement is borrowed from [7,8]. Fig. 3(a) shows the self-loop
refinement of place p1 in the WF-net A1 from Fig. 2, whereas Fig. 3(b) depicts
the transition tp1 refinement in the WF-net from Fig. 3(a) by WF-net A2.
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Fig. 3. (a) A self-loop place refinement, and (b) a transition refinement

By using biconnected sub-WF-nets of a WF-net and the net transformations
from Definition 8 it is possible to organize soundness verification of the WF-net.
In the class of safe systems, the soundness of a system is closely related to the
soundness of its biconnected sub-WF-nets.

Theorem 1. Each biconnected sub-WF-net of a WF-net is safe and sound, iff
the WF-net is safe and sound.

Proof. Let N be a WF-net and let T 2
N = (B, C, ρ, η,M) be the 2-WF-tree of N .

(⇒) By structural induction on the tree of the biconnected subnets.
base: If T 2

N contains only one biconnected subnet, i.e., |B| = 1, then N is a
biconnected WF-net. Obviously, the claim holds.

step: Let b ∈ B be a biconnected subnet. Suppose that the claim holds for
all aM such that a ∈ η(b). We show by induction that the claim is also
true for bM.
b? is a biconnected sub-WF-net of N and, hence, is safe and sound. Let
a ∈ η(b) and c ∈ C be such that (b, c, a) ∈ M. A WF-net b′ = b?[c] with a
self-loop transition tc is safe and sound. A WF-net b′[tc/a

M] is safe and
sound, cf., statement 4 of Theorem 3 in [8]. Therefore, after refining b?

with all the biconnected WF-nets that correspond to subnets from η(b)
one obtains a safe and sound WF-net that is equal to bM.

As ρM is equal to N , the claim holds.
(⇐) The claim trivially holds by following (⇒) in the reverse direction. ut

Therefore, it suffices to show that at least one biconnected sub-WF-net is not
safe and sound in order to conclude that the WF-net is not safe and sound. This
biconnected sub-WF-net causes unsoundness and constitutes valuable diagnostic
information. Finally, because biconnected sub-WF-nets can be computed in time
linear to the size of a net, the biconnected decomposition step does not add to
the overall complexity of soundness verification.

4 Towards Triconnected Verification of WF-nets

This section sketches the connectivity-based soundness verification of biconnected
WF-nets. Biconnected WF-nets contain no cutvertices; they can, however, contain
pairs of vertices that when removed yield the triconnected subnets. The sequential
algorithm for computing triconnected components in a biconnected graph runs
in linear time, cf., [9]. In [10], the authors discuss implementation aspects of the
algorithm. Let (X,F ) be a biconnected graph, then the algorithm requires time
and space proportional to max(|X|, |F |).
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Fig. 4. (a) A short-circuit net, (b) the 3-WF-tree, and (c) triconnected subnets

The triconnected decomposition of WF-nets is illustrated in Fig. 4. Fig. 4(a)
shows a WF-net that is biconnected, but not triconnected. That is, it contains
several triconnected subnets. For instance, the subnet between places p1 and
p3 is such triconnected subnet, as the removal of both nodes yields the graph
disconnected. According to [11], there are four structural classes of triconnected
components and, therefore, of triconnected subnets. A subnet is trivial if its a
flow; a polygon if it decomposes into a sequence of subnets where the exit of a
subnet is the entry of the next subnet in the sequence; a bond if it decomposes
into a set of subnets that share boundary nodes; or a rigid otherwise. These
subnets form a hierarchy that yields the tree of triconnected subnets, similar to
the tree of biconnected subnets introduced above. Fig. 4(b) shows this tree for the
example net in Fig. 4(a), while Fig. 4(c) also depicts two exemplary triconnected
subnets. Note that names of subnets hint at their structural class.

The subnets derived by triconnected decomposition of a WF-net may be
leveraged for soundness verification. While a detailed investigation of these nets
is beyond the scope of this paper, initial results have been presented already for
free-choice nets in [12]. There it was shown that for this class of nets soundness
imposes certain requirements on the boundary nodes of triconnected components.
For instance, all bond components of a free-choice sound WF-net are either place-
bordered or transition-bordered. Moreover, heuristics for soundness verification
based on triconnected components have also been proposed in [13].

5 Related Work and Conclusion

In this paper, we have investigated the relation between the connectivity property
of a WF-net and its behavioral correctness. We organized soundness verification
based on the biconnected decomposition of a WF-net and discussed the potential
for leveraging its triconnected decomposition.

Our approach relates to other work on the verification of process models.
Verification of workflow graphs might be organized based on fragments that
have a single-entry edge and a single-exit edge [14]. Albeit related, this work
leverages edge-connectivity, whereas our work uses node-connectivity. Soundness
checking based on heuristics and state space exploration for a triconnected
decomposition of a (free-choice) process graph has been proposed in [13]. Our
technique complements this approach and might be integrated to achieve more
mature soundness verification. Verification of Petri nets can be based on structural
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reductions. Besides the rules by Murata [6], Berthelot proposed a set of rules
that reduce live and bounded marked graphs to a single transition [15], while
there is a complete kit of rules for free-choice Petri nets [16]. All these rules are
incomplete when applied to nets of arbitrary structure.

Despite the large body of related work on the formal verification of process
models, we are not aware of any work that employs the connectivity property as
an angle to their structural analysis. The biconnected decomposition allows for a
divide and conquer strategy as suggested by the principles of connectivity-based
decomposition outlined in [17]. In future work, we aim at extending our approach
towards a holistic verification framework that allows for verification of ordinary
Petri nets using step-wise connectivity-based decomposition.
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